
[image: image3.png]
IATA XML Best Practices
Version: 1.6
Date: 14 November 2019
Table of contents
31
Revision History

42
Introduction

43
Standards conformance

44
Naming conventions

75
Elements versus attributes

76
Schema and message structure

87
Design paradigm and use of types

98
Enumerations and code lists

109
Annotations

1210
Namespaces

1411
Versioning and schema identification

1612
Obsolete schema, complexType, attributeGroup

1713
References

1 Revision History

	Version
	 Date
	 Name
	Description of change

	1.4
	20 Aug 2014
	Peter Neumann
	Based on version 1.3, changed to align with Industry Data Model and NDC

	1.4.1
	9 Jan 2015
	Marie Zitkova, Michael Thomas
	Removed picture in 6.1 with NDC specifics ;
refreshed TOC which was not up to date.

	1.5
	15 Mar 2016
	Patrick Brosse, Michael Thomas
	- Rewrote chapters 10.1–10.3 into 10.1–10.2
- Added chapter 10.5 IATA namespaces
- Added Alpha & Beta versioning to chapter 11.3
- Cleaned up chapters 11.5 + 11.6 + 11.7

- Added chapter 11.8 ‘id’ attribute for Alphas & Betas
- Added chapter 11.9 Deliverable Naming Convention
- Added “remove hyphens” to chapter 4.2

	1.6
	14 Nov 2019
	Patrick Brosse
JC Cornu
	· Updated chapter 10.5.3 IATA namespaces <dynamic> for Backporting

	1.6.1
	03 Dec 2019
	Patrick Brosse

Vanni Sanvincenti

JC Cornu
	· Correction in Chap 10.5.3 to move BP feature at the end of namespace and remove target range.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

2 Introduction

2.1 This document states rules and guidelines for the production of XML schemas and messages.
· both when generating with Enterprise Architect

· and when maintaining them manually

2.2 The purpose of these rules and guidelines are to produce XML schemas which:

· Are clearly documented

· Are easily maintained

· Are developed to a consistent standard

· Can be implemented on a wide range of platforms

· Develop or re-use component definitions.

· Leveraging the utilization of the XML technology

2.3 This document only covers the content of XML schemas and does not prescribe the transport mechanism.

2.4 The intended audience of this document is anyone developing, maintaining or using IATA XML schemas.

3 Standards conformance

3.1 IATA messages must comply with the following W3C XML Schema recommendations:

· Extensible Markup Language (XML) 1.0 (Second Edition) (Reference 1)

· Namespaces in XML 1.1 (Reference,2)

· XML Schema Parts 1-2 (Reference,3 and 4)

3.2 The IATA XML Data Dictionary will be used and added to as needed.

4 Naming conventions

4.1 Use full English names for type, element and attribute names. Abbreviations are discouraged except where needed to keep names less than 25 characters or for widely accepted industry abbreviations and acronyms.

Examples:

<FareQualifier>

<ResBookDesigCode>

<SpecificFlightInfoType>

4.2 Use mixed case to differentiate words with the leading character in each word in upper case. If used, acronyms should be in all upper case with an underscore between the acronym and the next word. When a word is hyphenated in regular English (e.g. Check-in Desk), remove the hyphen(s) and ensure the next character is upper case.
Examples:

<PTC_FareBreakdown>

<SSR_Code>

<CheckInDesk>
4.3 When naming similar or common concepts, use the same name for each instance of the concept (element or attribute name) and precede with a descriptive word to define the use.

Examples:

<OriginLocation>

<DestinationLocation>

<ConnectionLocation>

4.4 Complex type names should be suffixed with the word ‘Type’.

Examples:

ErrorType

CarrierFeeInfoType

4.5 Elements that are based on complex or simple types must not be suffixed by ‘ComplexType’, ‘SimpleType’ or ‘Type’.

Example:

<PersonName> of type PersonNameType

4.6 The naming of AttributeGroups should include the suffix “Group”

Example:

CurrencyCodeGroup

4.7 Attributes that are based on simple types must not be suffixed by ‘SimpleType’ or ‘Type’.

Example:

<CurrencyCode> of type AlphaLength3

4.8 The format of the root element for IATA messages shall be
 “IATA_ + area of focus + service operation + RQ or RS”.

Example:

<IATA_LoadsControlDisplayRQ>

4.9 The word ‘Notif” will be used in a root element name to indicate that the message provides (pushes) information from the originator to the recipient.

Example:

<IATA_LoadsControlSemiPermanentNotifRQ>

4.10 The .xsd file will be given the same name as the root element of the XML schema.

Example:

Root element

<IATA_LoadsControlDisplayRQ>

File name

IATA_LoadsControlDisplayRQ.xsd
4.11 The XML Schema attribute declarations should incorporate the following list of ‘Representation Term’. These were taken from the list of Representation Terms found in the Core Components Technical Specification (CCTS) published by UN/CEFACT
. For cases in which the length of an attribute name may exceed the 25 character limit, these “Secondary Representation Terms” should be used since it requires fewer characters.

	Primary Representation Term
	Secondary Representation Term
	Definition

	Amount
	Amt
	A number of monetary units specified in a currency where the unit of currency is explicit or implied.

	Binary Object
	BinObj
	A set of finite-length sequences of binary octets.

	Identifier
	ID
	A character string to identify and distinguish uniquely one instance of an object in an identification scheme from all other objects in the same scheme together with relevant supplementary information.

	
	URI
	A string of characters used to identify (or name) a resource. The main purpose of this identifier is to enable interaction with representations of the resource over a network, typically the World Wide Web, using specific protocols. A URI is either a Uniform Resource Locator (URL) or a Uniform Resource Name (URN). The specific syntax for each is defined by [RFC3986].

	Indicator
	Ind
	A list of two mutually exclusive Boolean values that express the only possible states of a property.

	List
	ListOf
	A collection of related information that may be specified once within an NDC schema to reduce payload size.

	Measure
	Meas
	A numeric value determined by measuring an object along with the specified unit of measure.

	Numeric
	Num
	Numeric information that is assigned or is determined by calculation, counting or sequencing. It does not require a unit of quantity or unit of measure.

	
	Value
	A result of a calculation.

	
	Rate
	A representation of a ratio where the two units are not included.

	Percent
	Pct
	A representation of a ratio in which the two units are the same.

	Quantity
	Qty
	A counted number of nonmonetary units possibly including fractions.

	Text
	
	A character string (i.e., a finite sequence of characters) generally in the form of words of a language.

	
	Proper Name
	A word or phrase that constitutes the distinctive designation of a person, place, thing or concept.

5 Elements versus attributes

5.1 Data should be represented as an element when
· It is not atomic (has attributes or child elements)
· It is likely that it will be extended in the future
· The data requires a choice or branch within the schema.
5.2 Data should be represented as an attribute when

· metadata about the element – e.g. a unit of measure

5.3 Core content is generally the data abstracted from a business domain and should generally be defined as an element.

5.4 Elements should not be overloaded with too many attributes. This is dependent on the business requirements. Instead, encapsulate attributes within child elements that are more closely related (or more granular)

5.5 If the data contains substructure, the data item must be modeled as an element. It can't be modeled as an attribute, because attributes take only xsd simple types. If the data contains multiple occurrences, -it should be defined as an element.

5.6 Attributes should be used where a value needs to be qualified such as a currency code for an amount

6 Schema and message structure

6.1 Create a complex type of standard properties used as a base type for common payload information (e.g. contains metadata used in both request and response messages).

6.2 Payload attributes are:

· Version (the version of the schema)
· Create Timestamp (message creation timestamp, e.g. 2014-01-13T13:59:38Z)
· Echo token

· Target (test, production)

· Sequence number

· Transaction identifier

· Transaction status (first, last, etc.)

· Primary language identifier

· Alternate language identifier

· Retransmission indicator

6.3 Create a root-level PayloadRequest element that contains common payload information and unique request message payload information and add it as a mandatory, root-level element in all IATA request messages

6.4 Create a root-level PayloadResponse element that contains common payload information and unique response message payload information and add it as a mandatory, root-level element in all IATA response messages

6.5 Define all data types in XML schema files in alphabetical order.

6.6 Processing Instructions (PI) should not be used.
7 Design paradigm and use of types

7.1 Define all type declarations (complex, simple) globally and all elements locally (Venetian Blinds).

7.2 Define XML schema elements via the ‘type’ attribute or an inline type definition (‘simpleType’ or ‘complexType’) instead of the ‘ref’ attribute that references a global element.

7.3 Whenever possible the built-in data types defined in the W3C schema specification should be used.

Example:

<xs:attribute name="TicketTimeLimit" type="xs:dateTime">

<xs:attribute name="TotalMiles" type="xs:positiveInteger">

<xs:attribute name="NegotiatedFaresOnly" type="xs:boolean">

7.4 Create new schema data types by using or extending existing IATA type definitions or from built-in XML schema types whenever possible.

7.5 All elements and attribute definitions should be restricted in some way to reduce the possibility of incompatible implementations. For example, integers must have a maximum and minimum value, or a maximum number of digits specified; strings should have a maximum length or a set of enumerations or pattern defined. However, these restrictions or patterns should be carefully chosen to ensure that arbitrary limits do not limit the future use of the schema. Reference should be made to the widest possible set of standards and implementations.

7.6 When the max occurrences of an element are known, the max occurrence should be set to this value rather than defining the element as unbounded.

7.7 Common attribute parameters should be defined globally as reusable components using the ‘attributeGroup’ definition.

Example:

<xs:attributeGroup name="CurrencyCodeGroup">

 <xs:attribute name="CurrencyCode" type="AlphaLength3" use="optional"/>

 <xs:attribute name="DecimalPlaces" type="xs:nonNegativeInteger" use="optional"/>

</xs:attributeGroup>
7.8 Disallow mixed content: XML data that use mixed content are difficult to specify and complicate the task of data processing. Much of the payload carried by mixed content is unchecked and does not facilitate data standardization or validation

7.9 No Mixed Content: Within the IATA schema, an element xsd:complexType SHALL NOT own the attribute mixed with the value true.

7.10 Specify Types for All Constructs: All IATA schema objects have names and this means that there are no anonymous types, elements or other components defined by IATA.
7.11 Avoid Wildcards in Reference Schemas: Wildcards in IATA schemas work in opposition to standardization. The goal of creating harmonized, standard schemas is to standardize definitions of data. The use of wildcard mechanisms outside of valid augmentation points (such as xsd:any, which allows insertion of an arbitrary number of elements from any namespace) allows nonstandard data to be passed via otherwise standardized exchanges. Avoidance of wildcards in the standard schemas encourages the separation of standardized and non-standardized data.

7.12 No Notations: The IATA schema SHALL NOT contain a reference to the type definition xsd:NOTATION or to a type derived from that type.
7.13 No Schema Redefinition: The IATA schema SHALL NOT contain the element xsd:redefine.
7.14 Untyped Elements Must Be Abstract: Within the IATA schema, an element declaration with the attribute name and without the attribute type MUST carry the attribute abstract with the value true.
7.15 No Untyped Attributes: Within the IATA schema, an attribute declaration with attribute name MUST carry the attribute type.
7.16 The xsd:nillable attribute MUST NOT be used.

7.17 No Unconstrained Attribute Substitution: The IATA schema SHALL NOT contain the element xsd:anyAttribute.
7.18 Component Naming Restrictions: All IATA components must be named. That is, type definitions and element and attribute declarations must be given explicit names — local and anonymous component definition is not allowed. Note that XML Schema enforces the placement of attribute group and model group definitions as top-level components, which forces the components to be named.
7.19 No Anonymous Type Definitions: Within the IATA schema, any occurrence of the element xsd:complexType or xsd:simpleType MUST appear as an immediate child of the element xsd:schema.
7.20 No Uniqueness Constraints: The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, xsd:keyref, xsd:selector or xsd:field.

7.21 Model Group Restrictions: Complex content definitions in XML Schema use model group schema components. These schema components, xsd:all, xsd:choice and xsd:sequence, also called compositors, provide for ordering and selection of particles within a model group.

7.22 Restrictions on Particle Ordering: The IATA schema SHALL NOT contain the element xsd:all.

7.23 No Recursively Defined Model Groups: Within the IATA schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation or xsd:element.

7.24 Restrictions on Named Groups: The IATA schema SHALL NOT contain the element xsd:group.

7.25 Default Value Restrictions: XML Schema provides the capability for element and attribute declarations to provide default values when XML instances using those components do not provide values.

7.26 Use W3C xsd:boolean primitive datatype for all logical (true/ false) IATA schema properties
7.27 Use new W3C dayTimeDuration datatype instead of constrained xsd:string simple type A dayTimeDuration value is a constrained version of the duration datatype; only day and time are specified.

8 Enumerations and code lists

8.1 Enumerations should only be used when there is a limited set of values (less than 20) and the list is static and the literals are less than 120 characters. Otherwise, an external code list should be used. When enumerations are used, they should be full English words.

Example:

<xs:simpleType name="AirTripType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="OneWay"/>

 <xs:enumeration value="Return"/>

 <xs:enumeration value="Circle"/>

 <xs:enumeration value="OpenJaw"/>

 <xs:enumeration value="Other"/>
8.2 Code lists should be used instead of enumerations where the list of values is dynamic or there is great likelihood that additional values will be added.

8.3 The name of a code list table should be the same or similar to the name of the attribute in XML Schema, but should be in plain English with spaces between the words unless industry specific terminology is used, e.g., OpenJaw.

8.4 When the IATA defined external code list is used, the annotation should include a statement referencing the appropriate code list.

9 Annotations
9.1 All complex types, simple types, elements, attribute groups, attributes, and enumerations must include meaningful annotations as specified below:

· Complex type - describe the overall purpose of a complex type

· Simple type - define the structure and its usage

· Element - describe the element in a meaningful manner so that those implementing can understand the usage of the element

· Attribute group - at the attribute group declaration, describe the overall functionality of the grouping. Within the element where the attribute group is referenced, describe the specific use of the attribute group

· Attributes - include usage information

· Enumerations - provide an explanation of each value. Annotation of elements that are typed should reflect the specific usage of that complex or simple type. If there is no additional specific usage information at the element level, then the global annotation found at the complex or simple type must be duplicated at the element level.

9.2 The annotation of the root element of each RQ (request) and RS (response) message shall include an overall description of the functionality of that message.
9.3 The term ‘may be’ used in an annotation indicates a possible use of an element or attribute; it does not denote that the element or attribute is optional. Optionality is defined in the Minimum Occurrence (MinOccurs=”0”) indicator of the element and the Use (use="optional") indicator of the attribute.

Example:

May be used to further describe the flifo information

9.4 IATA XML Schemas will use the <documentation> sub-element of the <annotation> element for schema documentation.

Example:

<xs:annotation>

<xs:documentation xml:lang="en">All payment information relevant to a booking request.</xs:documentation>

</xs:annotation>

9.5 Documentation elements will include the xml:lang attribute. The initial value of the attribute will be set to ‘en’.

Example:

xml:lang=”en”

9.6 IATA XML Schemas will use the <xsd:appinfo> element for additional information. Although this may enable humans to understand XML data, more information is needed to support the machine-understandable meaning of XML data.
9.7 IATA XML Schemas will use the <xsd:sample> element to add typical example data for the corresponding element.
Example:

<xs:element name="DepartureAirport" minOccurs="0">

 <xs:annotation>

 <xs:documentation xml:lang="en">Departure point of

 flight segment. Required for ET.

 </xs:documentation>

 <xs:sample>EWR</xs:sample>

</xs:annotation>

</xs:element>
9.8 IATA XML Schemas will use the <xsd:codeListAgencyIdentifier> element to add the unique identifier assigned to the Agency owns or is responsible for the Scheme or Code List being referenced.
9.9 IATA XML Schemas will use the <xsd:codeListAgencyName> element to add the agency name assigned to the Agency owns or is responsible for the Scheme or Code List being referenced.
9.10 IATA XML Schemas will use the <xsd:enumerationURI> element to add the Uniform Resource Identifier of the enumeration.
10 Namespaces

Remark: parts of this section will need to distinguish best practices for 2 main scenarios: schemas created prior to AIDM and manually maintained as long as they are not re-engineered through the AIDM, and schemas generated from the AIDM.

10.1 Common Type schemas (included from message or other common type schemas) will have a namespace specified exactly as message schemas (NS + TargetNS) and following the same naming conventions (see next paragraphs).
10.2 Object Library schemas will not have any IATA specific namespace specified (neither NS nor TargetNS, hence “Chameleon”). Object Library schemas are introduced with AIDM, to contain XSD complex types reflecting AIDM integrated logical data model entities with all possible attributes (attributes as in UML, i.e. BBIEs in UPCC), contrary to any message schema that will typically have a subset of the attributes.

10.3 The elementFormDefault shall be qualified.

10.4 The attributFormDefault shall be unqualified

10.5 The IATA namespace is built in 3 major parts, <root>/<variable>/<dynamic> :
 – the first part is considered as a “root”,
 – the second part is more variable under specific project conditions,
 – the third part is more dynamic depending on release delivery.
– the namespace structure post-domain (“root”) should follow a hierarchical convention, where each component delimited by the forward-slash is more granular than the previous.
10.5.1 IATA namespace <root> is “http://www.iata.org/IATA”
10.5.2 IATA namespace <variable> part has been defined to isolate a group of entities created together in a specific period.

· Traditional PADIS Schemas: Traditionally all IATA Schemas delivered in a PADIS release use the <variable> part to indicate the year of the creation of the XML Best Practice in 2007, first major version 00 :

· IATA namespace <variable> is “2007/00”

· xmlns="http://www.iata.org/IATA/2007/00"

· targetNamespace="http://www.iata.org/IATA/2007/00"
· EDIST Schemas: A new generation of XSDs created in scope of the NDC project, called EDIST “Enhanced DISTribution” :

· IATA namespace <variable> is “EDIST”

· xmlns="http://www.iata.org/IATA/EDIST"

· targetNamespace="http://www.iata.org/IATA/EDIST"

· AIDM-generated Schemas: once generated from the AIDM, all schemas will have :
· IATA namespace <variable> is “2015/00” where
- “2015” is the year when the AIDM approach was introduced
- “00” is the major version within the approach (starting with 00)
· xmlns="http://www.iata.org/IATA/2015/00"

· targetNamespace="http://www.iata.org/IATA/2015/00"

10.5.3 IATA namespace <dynamic>
· Traditional PADIS Schemas: No dynamic part

· EDIST Schemas:
· Dynamic part representing the PADIS release
· IATA namespace <dynamic> is “YYYY.S” (see Chapter 11.7 about Release “Id”)

· xmlns="http://www.iata.org/IATA/EDIST/2016.1"

· targetNamespace="http://www.iata.org/IATA/EDIST/2016.1"

· AIDM-generated Schemas:
· Dynamic part representing the PADIS release and specific Message
· IATA namespace <dynamic> is “YYYY.S/Msg” where
- YYYY.S is the PADIS release (see Chapter 11.7 about Release “Id”)
- Msg is the message name (e.g. IATA_ScheduleRQ).
· xmlns="http://www.iata.org/IATA/2015/00/2016.1/Msg"

· targetNamespace="http://www.iata.org/IATA/2015/00/2016.1/Msg"
· Backported schemas:
· A backported schema is a single structure allowing to extend an existing released schema, indeed some new feature (ex: 3DSsecure) delivered in new IATA release, need to be backported in previous release
· Even if the migration to the new IATA release is the best solution, the usage of backported schema is temporary acceptable solution using the augmentation point.
· All backported schemas would be referenced in the IATA Release after their creation and validation.
· A dedicated “backported” schema is created per feature per target release. To prevent collisions between version of schemas, a dedicated and unique namespace would be assigned per “backported” version on the schema.
· Each BP schema (one possible per feature per target release) can increment in versions, as corrections and/or adjustments are needed. This helps to uniquely identify the BP schema.
· The version is part of the schema, the IATA release is protecting collision between major and minor version
· Backported schema area
· xmlns="http://www.iata.org/IATA/2015/00/BP/2017.2/featureName_v0.1”
· Targeted release
· targetNamespace="http://www.iata.org/IATA/2015/00/BP/2017.2/featureName_v0.1"
· featureName with version
· “http://www.iata.org/IATA/2015/00/BP/2017.2/featureName_v0.1” is indicating featureName for a dedicated release, only usable in release 2017.2
· Patterns
· xmlns="http://www.iata.org/IATA/2015/00/BP/<targetRelease>/BP_schema_version”
· targetNamespace="http://www.iata.org/IATA/2015/00/BP/ <TargetRelease>/BP_schema_version"

· BP schema_version : dedicated area for Backported schema for a dedicated version of the BP feature (e.g. BP schema_v0.1).
10.5.4 Recap
	
	<root>
	
	<variable>
	
	<dynamic>

	Traditional
	http://www.iata.org/IATA
	/
	2007/00
	
	

	EDIST
	http://www.iata.org/IATA
	/
	EDIST
	/
	YYYY.S

	AIDM-generated
	http://www.iata.org/IATA
	/
	2015/00
	/
	YYYY.S/Msg

	AIDM-generated for BP
	http://www.iata.org/IATA
	/
	2015/00
	/
	BP/YYYY.S/Msg

11 Versioning and schema identification

11.1 Minor version changes to a schema will validate against previous versions of the instance document; for example, adding new optional data elements to message level schema, increasing repeats of elements, changing from mandatory to optional

11.2 Major version changes are not compatible to earlier versions (forward compatible) and invalidate the previous version, for example, deleting data elements, reducing max occurrences, changing the data type definition by restricting the size, format or pattern.

Example:

Version values for minor changes 2.001, 2.002, etc

Version values for major changes 2.000, 3.000, 4.000

11.3 Each version of a schema will be assigned a version number of xx.yyy where xx denotes the major version and yyy denotes the minor version. xx and yyy will be all numeric.

Examples:

1.001, 1.002, 2.000
Version numbers for a schema in Alpha and Beta status must be less than 1.000 (e.g. 0.001). This applies both for newly created schemas, and for schemas that are an evolution of an existing schema. E.g. if the ONE Order project creates an alpha release extending an existing NDC schema that already exists in version xx.yyy, the alpha release will have a version number less than 1.000.
Note: for the meaning of Alpha and Beta, refer to section 11.8.
11.4 The root tag of XML xsd schemas will contain a version attribute whose value will identify both the major version base and a minor version value. This value will directly map to the major version value of the message instance root tag version attribute.

Example:

Schema value - version=”1.002” matches instance value – version=”1.002”

11.5 The root tag of all IATA payload documents (instance messages) will contain the attributes related to namespace and target namespace defined in Chapter 10) with an associated “schemaLocation”.
The xsi:schemaLocation is built from the schema ‘id’ as in the following example with id=”IATA2016.1” => “./IATA/2016.1”
xmlns=”http://www.iata.org/IATA/...”

Version=”1.000”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation= “./IATA/2016.1”
11.6 The attribute schemaLocation is to be used on elements in instances to name the location of a retrievable schema for that element associated with namespace defined with “xsi”
Example:

xsi:schemaLocation= “./IATA/2016.1/IATA_LoadsControlSemiPermanentRQ”
The ‘id’ attribute on the root tag of the IATA message xsd schemas will contain the release, for example IATA2004.1.

IATA2004.1 denotes IATA ownership, the year (2004) and release sequence (.1) in the year
Example:

Message schema files: id=”IATA2004.1”

 ‘id’ attribute on the root tag of the IATA message xsd schemas for Alpha and Beta releases :

As a reminder and context information for reference only, the table below shows an extract from section 6 of PSC Resolution 783 defining PADIS.

	Developmental (Alpha Release) Data Exchange Specification
	means a data exchange specification that is in the development stage of its life cycle and as such can be released after presentation to PADIS with no formal assessment for interoperability and compliance with applicable guidelines and best practices. As a result, unspecified changes in the specification can be expected.

	Candidate
(Beta Release) Data Exchange Specification
	means a data exchange specification that is sufficiently mature to be released in either a pre-production or a production environment for the purposes of evaluation and testing. As a result, it is expected that identified issues are addressed and required tasks have been undertaken to ensure interoperability of the specification with other relevant standards, applicable guidelines and best practices. The specification has a limited life and will form the basis for the official PADIS submission prior to formal voting.

For Alpha and Beta releases of schemas, the ID attribute is used to indicate both whether a release has an Alpha or Beta status, and which release of the BRD it corresponds to.

The pattern is: IATA_a_p_b_sr with:

· ”a” = the PADIS / AIDM base release the project has started from e.g.16.2

· ”p” = a variable number of characters presenting the project e.g. “OneOrder”

· ”b” = a variable number of characters representing the BRD version number e.g. “2.1”,
 or indicating “CM” for “Change Management”
· “s” = the status : “A” for Alpha, “B” for Beta, and
“r” = the schema release number within Alpha or Beta (e.g. “A2” for One Order Alpha 2)
Example : IATA_16.2_OneOrder_2.1_A2 (for ONE Order BRD v2.1 schema release Alpha 2)
Here below is an illustrative schema showing a realistic example of how the id attribute could be used for a project’s (“OneOrder”) schema releases. Note that beside multiple successive alphas, the scenario also shows the potential need to “rebase” a project’s models and reflect this in the id attribute, when the main IATA trunk evolves while the project has not yet finished.

[image: image2.png]
From a “versioning” point of view, Beta releases must be merged with – or based on – the latest release in the IATA Trunk, ready to be integrated into the next IATA release.
The Deliverable Naming Convention for the release Zip file containing the XSDs will use the “id” value.

Examples:

IATA2016.2.zip ; IATA_16.2_OneOrder_2.1_A1.zip.
12 Obsolete schema, complexType, attributeGroup
From time to time, in exceptional cases there is a need to make a schema, ComplexType or attributeGroup obsolete. For historical reason, we keep old schemas or types which are not used anymore. The following paragraphs contain the descriptions of major obsolete cases.

Obsolete message schema (RQ or RS.xsd)

The number of occurrences of each element is set to Zero

minOccurs=”0” maxOccurs=”0”
A comment at root element states this file is obsolete.

<xs:schema

 xmlns="http://www.iata.org/IATA/2007/00"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.iata.org/IATA/2007/00" >

 <xs:annotation>

 <xs:documentation xml:lang="en">This file is obsolete.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="IATA_xxxxxRQ">

As the schema is no more backward compatible, the major version is incremented and the minor version is set to 0. (Example 3.2 => 4.0)

The file could be reused later for another purpose.

Obsolete complexType
The number of occurences of this Complex type is set to Zero

minOccurs=”0” maxOccurs=”0”
A comment for this Complex type states the fact that the type is obsolete.

<xs:documentation xml:lang="en"> This type is obsolete. </xs:documentation>

As the schema containing this complex type is no more backward compatible, the major version is incremented and the minor version is set to 0. (Example 3.2 => 4.0)

This Complex Type could reuse for another purpose in a future release.

Obsolete attributeGroup
All attributes of this group of attributes will have prohibited usage.

use=”prohibited”
A comment for this attributeGroup states the fact that the group of attributes is obsolete.

<xs:documentation xml:lang="en"> This group is obsolete. </xs:documentation>

As the schema containing this attributeGroup is no more backward compatible, the major version is incremented and the minor version is set to 0. (Example 3.2 => 4.0)

This attributeGroup could reuse for another purpose in a future release.

13 References

	1.
	Extensible Markup Language (XML) 1.0 (Second Edition)
	http://www.w3.org/TR/2008/REC-xml-20081126/

	2.
	Namespaces in XML 1.1

	http://www.w3.org/TR/2006/REC-xml-names11-20060816/

	3.
	XML Schema Part 1: Structures
	http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/

	4.
	XML Schema Part 2: Datatypes
	http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

	5.
	Information technology – Metadata registries (MDR) - Part 5: Naming and identification principles
	ISO/IEC 11179-5:2005

� United Nations Centre for Trade Facilitation and Electronic Business Core Components Technical Specification- part 8 of the ebXML Framework 15 November 2003 Version 2.01. Available on-line at < http://www.untmg.org/doc_tmg.html>.

© 2020 Copyright IATA

IATA XML Best Practices
Version 1.6
17 of 17

[image: image1]